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EXTERNAL BOUNDARY CONDITIONS FOR THREE-DIMENSIONAL

PROBLEMS OF COMPUTATIONAL AERODYNAMICS*

SEMYON V. TSYNKOV t

Abstract. We consider an unbounded steady-state flow of viscous fluid over a three-dimensional finite body

or configuration of bodies. For the purpose of solving this flow problem numerically, we discretize the governing

equations (Navier-Stokes) on a finite-difference grid. The grid obviously cannot stretch from the body up to infinity,

because the number of the discrete variables in that ease would not be finite. Therefore, prior to the discretization

we truncate the original unbounded flow domain by introducing some artificial computational boundary at a finite

distance of the body. Typically, the artificial boundary is introduced in a natural way as the external boundary of

the domain covered by the grid.

The flow problem formulated only on the finite computational domain rather than on the original infinite domain

is clearly subdefinite unless some artificiM boundary conditions (ABC's) are specified at the external computational

boundary. Similarly, the discretized flow problem is subdefinite (i.e., lacks equations with respect to unknowns) unless

a special closing procedure is implemented at this artificial boundary. The closing procedure in the discrete case is
called the ABC's as well.

In this paper, we present an innovative approach to constructing highly accurate ABC's for three-dimensional flow

computations. The approach extends our previous technique developed for the two-dimensional case; it employs the

finite-difference counterparts to Calderon's pseudodifferential boundary projections calcuiated in the framework of the

difference potentials method (DPM) by Ryaben'kii. The resulting ABC's appear spatially nonlocal but particularly

easy to implement along with the existing solvers.

The new boundary conditions have been successfully combined with the NASA-developed production code TLI_S3D

and used for the analysis of wing-shaped configurations in subsonic (including incompressible limit) and transonic flow

regimes. As demonstrated by the computational experiments and comparisons with the standard (local) methods,

the DPM-based ABC's allow one to greatly reduce the size of the computational domain while still maintaining high

accuracy of the numerical solution. Moreover, they may provide for a noticeable increase of the convergence rate of

multigrid iterations.

Key words. External flows, infinite-domain problems, artificial boundary conditions, far-field linearization,

boundary projections, generalized potentials, difference potentials method, auxiliary problem, separation of variables.
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1. Introduction.

1.1. Preliminaries. A standard approach to solving infinite-domain boundary-value prob-

lems on the computer involves truncation as a first step, prior to the discretization of the contin-

uous problem and the solution of the resulting discrete system. The truncated problem in both

continuous and discrete formulations is clearly subdefinite unless supplemented by the proper clos-

ing procedure at the outer computational boundary. The latter boundary is often c_lled artificiM

emphasizing the fact that it originates fi'om the numerical limitations (the discrete system should

contain no more than a finite number of variables) rather than original formulation. Typically, the

artificial boundary is introduced as an external boundary of the finite computational domain (i.e.,

the domain covered by the grid, on which the original system is discretized). The corresponding

closing procedure at the outer boundary is called the artitlciM boundary conditions (ABC's).

In the ideal case, the ABC's would be specified so that the solution on the truncated domain

coincides with the corresponding fragment of the original infinite-domain solution. However, in

spite of the fact that different ABC's methodologies have been studied extensively over the recent

two decades, the construction of such ideal (i.e., exact) ABC's that would at the same time be

computationally inexpensive, easy to implement, and geometricMly universal, still remains a fairly
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remote possibility. The primary reason for that is that the exact ABC's are typically nonlocal,

for steady-state problems in space and for time-dependent problems also in time. The exceptions

are rare and, as a rule, restricted to the model one-dimensional examples. From the viewpoint

of computing, nonlocality may imply cumbersomeness and high cost. Moreover, as the standard

apparatus for deriving the exact ABC's involves integral transforms (along the boundary) and pseu-

dodifferential operators, such boundary conditions can be obtained easily only for the boundaries

of regular shape.

On the other hand, highly accurate ABC's are most demanded in many areas of scientific

computing because as shown by the different authors both theoretically and computationally, the

overall accuracy and performance of numerical algorithms, as well as interpretation of the numerical

results, strongly depend on the proper treatment of external boundaries. The possible range of

applications for different ABC's techniques is broad. Aerodynamics, in which external problems

represent a wide class of important applications, especially when it comes to the analysis of three-

dimensional configurations, constitutes a fraction of this range. Besides the hydro- and aerodynamic

problems (external flows, duct flows, boundary layers, free surfaces, etc.), the entire range includes

the flows in porous media, filtration, magneto-hydrodynamic flows, plasma (e.g., solar wind), the

problems of solid mechanics (in particular, elasticity and aeroelasticity), and the problems of wave

propagation (electromagnetic, acoustic, seismic), just to name a few.

As mentioned above, the other usual requirements of ABC's, besides minimization of the error

associated with the domain truncation, are low computational cost, geometric universality (i.e.,

applicability to a variety of irregular boundaries often encountered in real-life settings), and imple-

mentation without difficulties, in particular, readiness in combining the ABC's with the existing

(interior) solvers. The requirements of this group are typically met by many approximate local
methods that are considered an alternative to the exact ABC's as the latter are not attainable

routinely. However, the basic trend in terms of accuracy remains the following: higher accuracy

for the boundary procedure requires more of the nonlocal nature of exact ABC's to be somehow
taken into account.

In fact, almost any nmnerical algorithm for setting the ABC's can be thought of as a com-

promise between the two foregoing groups of requirements that in a certain sense contradict one

another. Shifting the balance towards locality and practical efficacy often implies insufficient ac-

curacy; shifting it to the other side, towards highly accurate nonlocal techniques, may often yield

cmnbersome and all but impractical algorithms. It is not surprising, therefore, that the treatment

of external boundaries in modern production computations typically follows the first, local, path.

In computationai fluid dynamics (CFD), for example, only a few ABC's methodologies out of the

wide variety proposed to date can be regarded as the commonly used tools. All of them are ei-

ther based on the essential model simplifications, e.g., local quasi-one-dimensional treatment in the

vicinity of the artificial boundary, o1"obtained as a localization of some nonlocal ABC's. To meet

the overall accuracy requirements when using such simple boundary procedures, one often has to

choose the excessively large computational domains.

A survey of methods for setting the ABC's in different areas of scientific computing can be

found in our work [1], as well as in the comprehensive reviews by Givoli [2, 3]. These surveys give

a comparative assessment of advantages and disadvantages of various global and local techniques,

and also point out the relations between the global and local methods.

1.2. Methods and Objectives. This paper continues ore" work on constructing the ABC's

that would combine the advantages relevant to both local and nonlocal approaches. The specific

area of applications that we are looking at is steady-state external viscous flows.

Previously, we have developed and implemented in practice the highly accurate ABC's for two-

dimensional case (plane geometry). Our approach is based on usage of the Calderon generalized

potentials and pseudodifferential boundary projections [4] (see also work by Seeley [5]). The po-
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tentialsand projectionsareactuallyemployedin the modifiedform proposedby Ryaben'kii;the
correspondingnumericaltechniqueusedfor calculatingthe potentialsandprojectionsis knownas
the difference potentials method (DPM), see work by Ryaben'kii [6, 7, 8] and also the description

of the method in the book by Mikhlin, et al. [9]. The resulting DPM-based boundary conditions

appear globM. As, however, will be seen, one of the principal advantages that we gain using the

DPM is that the method allows us to simultaneously meet the high accuracy standards and the

requirements of geometric universality and easiness in implementation.

The two-dimensionM DPM-based ABC's have been used along with the multigrid Navier-Stokes

code FLONGby Swanson and Turkel [10, 11, 12]. In spite of their nonlocal nature, the new boundary

conditions readily apply to the boundaries of irregular shape and appear very easy to incorporate

into the existing solver. In our computations, the DPM-based ABC's have explicitly outperformed

the standard local methods from the standpoints of accuracy, convergence rate, and robustness.

The investigated regimes range from the very low (incompressible limit) to transonic Mach numbers

and encompass both laminar and turbulent flows.

The aforementioned two-dimensional constructions and the corresponding numerical results

have been reported in a series of papers. In work [13], we describe the foundations of the DPM-

based approach to setting the ABC's for computation of two-dimensional external viscous flows

(Navier-Stokes equations). In work [14], we implement this approach along with the code FLOMG

and present some numerical results for subsonic and transonic laminar flows over single-element

airfoils. In work [15], we show the results of subsequent numerical experiments and propose an

approximate treatment of turbulence in the far field. Our work [16] delineates the algorithm for

solving one-dimensional systems of ordinary difference equations that arise when calculating the

generalized difference potentials. In work [17], we extend the area of applications for the DPM-based

ABC's by analyzing two-dimensional flows that oscillate in time; we also provide some solvability

results for the linearized thin-layer equations used for constructing the ABC's. In work [18], we

present a general survey of the DPM-based methodology as applied to solving external problems

in CFD, including parallel implementation of the algorithm, combined implementation of nonlocal

ABC's with multigrid, and entry-wise interpolation of the matrices of boundary operators with

respect to the Mach number and the angle of attack. Additionally, in [18] one can find some new

theoretical results on the computation of generalized potentials, the construction of ABC's based

on the direct implementation of boundary projections (thin-layer equations), and some numerical

results for various airtbil flows: laminar and turbulent, transonic and subsonic, including very low
Mach numbers.

The next natural objective after constructing the two-dimensional algorithm is the analysis

of three-dimensional steady-state flows. This case is undoubtedly the one most demanded by the

current practice in CFD. In work [19, 20], we outline the basic elements of the DPM-based ABC's

for steady-state viscous flows around the wing-shaped configurations and show some preliminary

numerical results for the subsonic regime. The numerical results of work [20] are obtained with the

NASA-developed production code TLNS3D by Vatsa, et al. [21]. In work [22] we further develop

the three-dimensionM DPM-based algorithm and present the computational results for transonic

flows. In all cases (see [20, 22]), the DPM-based ABC's allow one to greatly reduce the size of the

computational domain (compared to the standard local boundary conditions) while still maintaining

high accuracy of the numerical solution. This actually means the overall increase of accuracy due

to the improved treatment of the artificial boundary; it also implies the substantial economy of the

computer resources. Moreover, the DPM-based ABC's may provide for a noticeable speedup (up

to a factor of three) of the convergence of multigrid iterations.

Below, we for the first time systematically describe the three-dimensional DPM-based ABC's

for calculating viscous flows around the wings. We address the theoretical foundations of the

approach, present the numerical algorithm with a fair amount of details, and demonstrate the
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computationalresultsfor the differentflowregimes,includingthe low speedflowandtheflowwith
the developedseparation.The numericalresultsfor the DPM-basedABC's are comparedwith
thoseobtainedwith the standardlocalmethod.

The materiM in the paper is preparedasfollows. In Section2, we formulatethe problem,
describethe specificgeometricsettingfor three space dimensions, provide the foundations for the

DPM-based ABC's on the continuous level, and then implement the new Mgorithm in the finite-

difference framework. In Section 3, we first briefly summarize the results of our previous numerical

experiments in two space dimensions and then report on the recent three-dimensionM computations

for various flow regimes. Section 4 contains the conclusions.

2. External Flow.

2.1. Formulation of the Problem. We consider an unbounded steady-state flow of viscous

fluid past a three-dimensional wing. The flow is uniform at infinity. We consider both incompress-

ible and compressible formulations, in the latter case we assume that the fluid (gas) is thermody-

namically perfect and that the free stream is subsonic. Moreover, as the fluid is viscous and the

size of the immersed body (wing) is finite, the flow limit at infinity is a flee stream.

Generally, the near-field flow is governed by the full Navier-Stokes equations. However, in

many cases (including those studied in this paper, see Section 2.2) the full system can be simplified

and reduced to the so-called thin-layer equations [23], which do not contain streamwise viscous

derivatives. In particular, this simplification is done in the code TLNS3D that we are using for our

numerical tests (Section 3). Moreover, for the most interesting case of turbulent flows the near-

field numerical algorithm should also involve some turbulence model, we comment on this issue in

Section 3, which is devoted to numerics.

2.1.1. Linearization. In the far field (i.e., far enough from the finite immersed body), the

perturbations of the flow induced by the immersed body are small and we therefore linearize

the governing thin-layer equations against the constant free-stream background. Introducing the

Cartesian coordinates (x, y, z) and assuming (without loss of generality) that the fi'ee stream is

aligned with the positive x direction, we can write the dimensionless linearized equations as

C Ou D Ou
(2.1a) L u - Ox + Oy

where for the incompressible case

+EOU 02u HO2u 02u
Oz +F_Ty 2 + Oz 2 + J - o,OyOz

(2.]b) u =
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Here, u, v, w, and p are the perturbations of the Cartesian velocity components and pressure,

respectively, and p is the perturbation of density for the compressible case.

The derivation of equations (2.1) involves two consecutive steps. First, we introduce the di-

mensionless quantities for the original thin-layer system. To do that, in both incompressible and

compressible case we scale the velocity projections by the dimensional free-stream value of the

x-component u0. (As mentioned above, the free-stream y and z velocity components are zero:

v0--0, w0=0.) Moreover, for the incompressible flow we scale the original pressure by u0 2 and for

the compressible flow the pressure is scaled by P0U02, the internal energy _ is scaled by u02 and

the viscosity # is scaled by #0. (Everywhere above, the subscript "0" denotes the corresponding

"full," i.e., "nonlinear," dimensional value.) Finally, we scale the coordinates x, y, and z by the

characteristic length L, for example, it may be the root chord or the semi-span of the wing (see

Section 2.2). For the compressible flow, we also have to use the equation of state of the perfect gas

to eliminate the internal energy fi'om the original system.

After the nondimensionMization, we represent each quantity (velocities and pressure for the

incompressible case and velocities, pressure, and density for the compressible case) as a sum of the

constant background value (free stream) and the small perturbation and retain in the equations

only the first-order terms with respect to the perturbations. (Note, in the incompressible case only

the gradient of the pressure is involved in the original system, therefore the actual value of the

background constant for the pressure does not matter.) In so doing, we arrive at equations (2.1a),

(2.1b) for the incolnpressible flow and equations (2.1a), (2.1c) for the compressible flow. Both in

(2.1b) and (2.1c) Re is the Reynolds number (in the turbulent case, it is an effective far-field value,

see [15]); in addition, for the compressible flow (see (2.1c)) 2V/o = u0/(Tpo/Po) 1/2 is the free-stream

Mach number (always M0 < 1), Pr is the Prandtl number, and 7 is the ratio of specific heats.

Note, for the incompressible case it is clear that the differentiM equations for the small per-

turbations are linear. For the compressible case, however, this fact may require some additionM

justification, see Section 2.1.2.

The system (2.1) describes the flow in the far field. In both incompressible and compressible

cases, it is supplemented by the boundary condition

(2.2) u---+o, as r-(x 2+y2+z2)l/2----++oo,
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whichmeansthat all the perturbationsvanishat infinity, or equivalently,the flowapproachesthe
freestream.

Let usmention,that thematricesC, D, E, F, H of (2.1b) are symmetric, whereas the matrices

U, D, E, F, H of (2.1c) are not. As the symmetric form of the matrices may sometimes be more

convenient for the analysis and also more suitable for the numerical calculations (especially when

the Mach number Mo is low), one can use the transformation proposed by Abarbanel and Gottlieb

in work [24] to simultaneously reduce C, D, E, F, H of (2.1c) to the symmetric (and some of the

matrices to the diagonal) form. Specifically, introducing the non-degenerate matrix S,

(2.3a) S =

with the inverse

(2.3b) S -_ =

we have instead of (2.1c)

(2.4) C = S-1C S =

/) = S-1DS=

E= S-1ES=

['= S-1FS =

v_Mo 0 0 0 0
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

(v/TMo) -1 0 0 0 7x/_-z_-l(v/TMo) -1

(vffMo) -1 0 0 0 0
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

-(¢7(7-1)Mo)-' 0 0 0 _CT-=r-_(v,_Mo)-'

1 (v Mo) -1 0 0 0
( V/_-_]l, if0 ) -1 1 0 0 _---_ 1 (v_Mo) -1

0 0 1 0 0

0 0 0 1 0

0 _7=-r-l(v_Mo) -_ 0 0 1

0 0 (v/_M0) -1 0 0

0 0 0 0 0

0 0 0
0 0 0 0 0

0 0 y/_- I(V/_'J'II0) -1 0 0

0 0 0 ( V/_-]_/I0 ) -1 0

0 0 0 0 0

0 0 0 0 0

(v/_Mo) -1 0 0 0 v_- l(v@-Mo) -1

0 0 0 7_-L-_---1(v/_Mo) -1 0

0 0 0 0 0

0 1 0 0 0

0 0 4/3 0 0
0 0 0 1 1

0 0 0 0 7 pr-1

, /_- ----S-1H S =

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

o o o 4/3 1
0 0 0 0 7 pr-1

,I = S-1JS= J.
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The symmetric form (_, /), /), /_, /_, J (see (2.4)) of the system matrices appears useful when

analyzing the incompressible limit M0 ---+ +0. A detailed study of the compressible Euler and

Navier-Stokes equations as the Mach number approaches zero can be found in work [25], as well as

in work [26, 27].

2.1.2. Asymptotic Methods -- Linear vs. Nonlinear. In connection with the linearized

model proposed above for the far field, especially as it regards the compressible case, we will discuss

here one group of the ABC's methods that are widely used in computations. These methods employ

some asymptotic form of the far-field solution for closing the system of equations to be solved inside

the computational domain. Typically, this approximate asymptotic form can be obtained as a few

leading terms of the series (or asymptotic series) that represents the solution in the far field. The

corresponding ABC's most often appear local.

The idea of the this type was employed, for example, by Sa and Chang in work [28] to set

the ABC's for vorticity when integrating the incompressible Navier-Stokes equations around a

cylinder. Burkhart in [29] and Burkhart et al. in [30] derive an asymptotic expansion for the finite-

difference fundamental solution of the three-dimensional Laplace operator on a Cartesian grid and

then use a few leading terms of this expansion to set the ABC's for an external flow problem that

is solved within the full-potential framework. Wubs, Boerstoel, and Van der Wees in [31] use a

Fourier representation of the far-field solution to the two-dimensionM Laplace equation to cMculate

a potential flow around an airfoil. The ABC's [31] are again derived from the first few leading

terms of the expansion; as the artificial boundary approaches the airfoil, more terms are required

to maintain the accuracy. FinMly, the so-cMled point-vortex model, which has been proposed by

Thomas and Salas in an earlier work [32] and which is extensively used in the today's CFD is also

based on the idea of asymptotics. SpecificMly, the first leading term of the far-field expansion for

the linearized flow potential is used to calculate the velocity projections at the external boundary

when computing the two-dimensional compressible flows. This leading term is proportional to the
circulation of the flow.

The asymptotic methods may often require the explicit knowledge of the coefficients that multi-

ply the corresponding terms in the expansion (the ones that are used in the far-field representation).

In CFD, these coefficients are typically obtained through the boundary conditions on the surface

of the immersed body. For example, the value of circulation for the point-vortex model [32] is

proportional to the lift, which is cMculated by integrating the pressure Mong the surface. There is

also another way of using the asymptotics for setting the far-field ABC's. It has been proposed by

Bayliss and Turkel in work [33, 34, 35] and by Bayliss, Gunzburger, and Turkel in work [36] and

does not require the explicit knowledge of the coefficients. Instead, the authors of [33, 34, 35, 36]

develop a set of special local differential relations that identically cancel out the prescribed number

of leading terms in the corresponding series; these relations can obviously serve as the ABC's.

However, they are typically of a high order even if the order of the original equation (system) is
lOW.

As a rule, the asymptotic ABC's methods are derived on the basis of the linear (or linearized)

equations (apparently because it is easier to study the convergence of the corresponding series). In

certain cases, however, one takes into account the nonlinear corrections as well. For example, when

anMyzing the transonic limit M0 ---+ 1 for the small perturbations of the velocity potential in the

flow of compressible gas, some second-order terms should formally be retained in the differential

equation along with the first-order terms (see, e.g., the book by Cole and Cook [37]). This leads

to the nonlinear K£rm£n-Guderley equation rather than to the linear PrandtLGla.uert equation

(the latter is valid for smaller/140). For two-dimensional external flows (e.g., flows around airfoils)

described by the K£rm£n-Guderley equation, it turns out that the nonlinear corrections to the

leading linear lift-based term _ -F0/27c in the far-field expansion of the potential (r is the flow

circulation, 0 is the polar angle) contain the terms proportional to log r/r (r is the polar radius),
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whichformally decayslowerthan the next linear term _ 1/r as r ---+ +ec. This circumstance,

in particular, gave reasons to Drela in work [38] and Giles and Drela in work [39] to include the

nonlinear correction terms in their simplified far-field potential model for the compressible airfoil

calculations. (Note, the entire series that represents the behavior at infinity of the potential function

of a two-dimensional subsonic compressible flow has been accurately constructed by Ludford in work

[40] using the hodograph plane techniques.)

Our two-dimensional DPM-based approach of [13], however, uses the full flow system; we never

introduce the potential and we Mways consider only the linearized far-field flow. The accuracy and

performance of the corresponding nonlocal ABC's are demonstrated by the numerical experiments,

see our work [14, 15, 18]. These accuracy and performance are typically better than those of the

standard methods. However, we should say that the investigated Mach numbers have never come

really close to the transonic limit, we have always run our calculations in the range 11//0< 0.8.

Generally, retaining the second-order nonlinear terms in the compressible far-field model for two-

dimensional flows is most relevant to the case of Mach numbers close to one, M0 ---+ 1, whereas

the linear theory works best for _ << (1- M02) 3/2 (see [37]), here _ can be regarded as, e.g., the
airfoil thickness.

The situation with the compressible far-field expansion for three space dimensions is entirely

different. Let us consider here the K£rm£n-Guderley equation (see [37])

(2.5) 02¢ 02¢ 02¢ 7 + 1 0¢ 02¢
Ox--Z+ -ffi + O_2 - K Ox Ox 2"

In equation (2.5), ¢ is the perturbation of the full potential • of the flow around a thin three-

dimensional wing so that

(2.6a) 1 0(I ) _2/30¢ 1 0(I _ (_,0¢ 1 0(I ) 0¢

_o Ox - 1+ Ox' _o ov o_' _-oN - '_3--/'

_1 = 51/3y, _1= _,1/3y,

¢5is the wing thickness (5 --+ +0 along with M0 _ 1 in the transonic limit),

1 - _Mo2
(2.6b) K - _2/3

is the parameter of transonic similarity (the true linear theory corresponds to big values of K, see,

e.g., [41]), the additional coordinate transformation is given by

(2.6c) _)= v/F__, _ = 4-ff_,

7 is still the ratio of specific heats, and the free stream is again aligned with the positive x direction.

The far-field expansion for ¢ in the linear theory, i.e., when the right-hand side (RHS) of

equation (2.5) is omitted, starts with the horseshoe vortex (see, e.g., [42])

_) (x)(1 + cos0) cos c2(2.7a) ¢1- _)2_2 1+ = ÷sin0 '

where the spherical coordinates are introduced as
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x=Pcos0, _)=Psin0cos99, _=÷sin0sin99.

Expression (2.7a) obviously has a singularity in the wake, i.e., along the line 0 = 0. Clearly, the

source term of order 1/P is not present in the far-field expansion because the surface of the wing is

assumed closed. Therefore, the next term in the linear expansion should be proportional to 1/P 2.

We consider its generM form ¢2 = _Z,m P-_--II_m( 0, 99), l = 1, m = --1, 0, 1, where the spherical

functions Yzm(O, 99)are given by Yzm(O, 99)= _(cosO)exp(im99), and 7)/_(#)= (1-#2)m/27)}m)(#),
1 d l

m _< l, here Pl(#) - 211!d# z(#2 _ 1)t are the Legendre polynomials. Using the real representation,

we obtain the generM form of the second term as

(2.7b) x by _ + c_ 3 cos 0 bsin 0 cos 99 sin 0 sin 99¢2 = a p-5+ p3 = a p----U-+ p2 +c p2

where a, b, and c are some arbitrary constants.

To obtain the nonlinear corrections due to the RHS of equation (2.5), one can substitute the

linear terms (2.7) into this RHS and solve the resulting Poisson equation. For the purpose of

simple demonstration we will do that separately for ¢1 of (2.7a) and ¢2 of (2.7b) although the

similar procedure can be carried out for any weighted sum of ¢1 and ¢2.

Substitution of (2.7a.) into the RHS of equation (2.5) yields

1 0 (p20&" / 1 0 ( 0¢) 1 02¢ 7+13cos0sinZ0cos299(2"81) ÷20p \ _] + ÷2sin000 sin0-_ + p2sin 200992 - I( P'_

Note, the singularity of the potential (2.7a) in the wake (along 0 = 0) vanishes with differentiation.

The RHS of equation (2.8) can now be expanded with respect to the spherical functions; the

corresponding finite Fourier series is, in fact, given by

(2.9)
1 2

cososin Ocos299= 99)-  SS°(O,99)+ (O,99)

Taking into account that the spherical functions t_m are actually the eigenfunctions of the Beltrami

operator on the sphere (two last terms on the left-hand side of equation (2.8)), we can separate

the variables in equation (2.8) and reduce it to the finite family of one-dimensional equations with

respect to the Fourier transformation ,6l,,_ - ¢:

(2.10) d2 ; 2d$ + 1)$
• dP_+ ÷dP p2 - pk+2, l= 1,3, k=3.

The constants Az in (2.10) are, of course, inverse proportional to the transonic similarity parameter

K of (2.6b), they also involve the coefficients of the expansion (2.9). The homogeneous counterpart

to equation (2.10) has two linearly independent solutions, q_I(÷) = pl aim CH(P) = ÷-Z-1. The

solution q_(÷) to the nonhomogeneous equation (2.10) can therefore be found in the form

(2.1]a) @(P) = C[(P)¢I(P ) "_- CI[(r)_II(P ) -- ci(r)P l _- cII(P)P -l-l,

where the functions ci(P) and CH(P) satisfy the system
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(2.11b)
[ ]d$ii(÷) -g

d_ dP

Solving (2.11b) with respect to ci(÷) and CH(÷) yields

[°1= Al "

1 1

(2.12) CI(_) _ _l+k' ClI(_) _.o _-l+k-1

provided that l + k ¢ 0 and -1 + k ¢ 1, respectively. As both of the latter conditions are met for l

and k from (2.10), we substitute the expressions (2.12) into equality (2.11a and finally obtain the

nonlinear correction due to the horseshoe potential of (2.7a) as

1

(2.13a) (PlNL _ _"

The same type of derivation can be performed for the doublet potentiM of (2.7b). Substituting

02 of (2.7b) into the RHS of equation (2.5) one obtains the expression proportional to ÷-7 instead

of ÷-5 in the RHS of equation (2.8). The expansion analogous to (2.9) will now contain y m for

1 = 1, 3, 5, and after the separation of variables the equation (2.10) will also change accordingly,

we will have k = 5 instead of k = 3 and add l = 5 to the set of wavenumbers. As a result, the

nonlinear correction due to the potential Ce of (2.7b) can be shown to have the form

1

(2.13b) _b2NL _ _--g.

We see that the nonlinear correction (_INL of (2.13a) decays at infinity two orders of magnitude

faster than the term _1 of (2.7a) that it originates from. AnMogously, the nonlinear correction

q_2NL of (2.13b) decays at infinity three orders of magnitude faster than the corresponding term

02 of (2.7b). We therefore conclude, that unlike the two-dimension_l case, the transonic nonlinear

corrections are not required when analyzing the far field for three space dimensions. This conclusion

basically coincides with the results of [37] saying that the far field around a thin three-dimensional

finite-span wing is essentioally linear. In other words, we have shown that the smM1 perturbations of

the velocity potential of a three-dimensional compressible flow are described by the linear formulas

in the far field even when M0 ---+,' 1. This justifies the far-field linearization of Section 2.1.1.

2.1.3. Outline of the Algorithm. Having introduced the linearized model (2.1), (2.2) for

the far filed (see Section 2.1.1) we now obtain the combined problem: nonlinear inside the finite

computational domain and linear on its infinite exterior. The nonlinear and linear parts of the

problem are, of course, not independent. The interior and exterior solutions should match at the

artificial boundary and consequently, the combined problem must be solved as a whole. Therefore,

at the first glance the new problem is no easier than the original one from the standpoint of

solving it numerically because it is still formulated on the unbounded domain. However, using the

methodology of Calderon's projections and the DPM [6, 7, 8], the exterior linear problem can be

effectively reduced to a certain nonloc_l relation formulated on the artificial boundary. The latter
relation can serve as the desired ABC's.

More precisely, we introduce a special space of (vector-)functions at the artificial boundary,

it will be called the space of c/ear traces [6, 7, 8]. We also define a (pseudodifferential) projec-

tion operator that maps the space of clear traces onto itself. This operator will be anMogous to
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Calderon's boundary projections. Under certain conditions, one can show that the element of the

space of clear traces is actually a trace of some solution to the problem (2.1), (2.2) on the exterior

domain if and only if this element belongs to the image of the aforementioned projection operator.

The latter condition can, in fact, be written in the form of Calderon's boundary equation or the

so-called boundary equation with projection (BEP) [6, 7, 8]. Its solutions will provide us with the

complete boundary classiticatiol_ (in terms of the appropriate traces) of all those and only those

u's (see (2.1b) and (2.1c)) that solve (2.1), (2.2) outside the computational domain.

As we intend to set the ABC's for the discretized flow problem, the foregoing boundary classifi-

cation of the exterior solutions will also be obtained in the discrete framework using the concept of

finite-difference clear traces and finite-difference counterparts to Calderon's projections and gener-

alized potentials [6, 7, 8]. Once we are able to calculate the image of Calderon's projection (i.e., the

result of application of this operator to every given input), we can actually set the ABC's in a few

different ways. Earlier (see [13, 14, 15]) we have been solving the corresponding BEP using some

variational approach. Below, we follow the different path, namely, we implement the boundary

projections directly as proposed first in [18]. In fact, applying the Calderon operator we update

the missing boundary values on every cycle of the iteration procedure that is employed inside the

computational domain.

2.2. Geometric Issues and the Basics of the Discrete Algorithm. The specific config-

uration of domains that we will be dealing with hereafter is shown in Figure 2.1.

x

Z

FIG. 2.1. Schematic geometric setup; the wing on the left is enlarged.

The actual structure displayed in this figure is the well-known test wing ONERA M6 (the

wingtip is blunted, it is in the "hidden" area on the figure). The wing stretches span-wise along

the Cartesian axis z and is assumed symmetric with respect to the plane z = 0. The uniform at

infinity fluid flow is coming along the positive x direction, which together with the symmetry of

the wing implies the symmetry of the entire flow pattern with respect to z = 0.
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The latter symmetry, in turn, means that the components u i of u, i = 1,...,4 for (2.1b) and

i = 1,..., 5 for (2.1c) (note, the x projection of the velocity vector u - u i for i = 2) satisfy the

following set of equalities for i # 4:

(2.14a) -_(., Izl) = -_(.,-I_l)

Ou i _ Ou i . Ou i _ Oui Ou i _ Ou i

52(., Izl)= 5T(-,-Izl), _-y (., Izl)= -g)-y(.,-f_l), _2(-, Izl) - _ (',-I_1),

02 ui _ ( 02 ui 02 ui 02 ui 02ui
Dy 2 (" Iz]) = Oy "'-Izl)' --_S ('' Izl) = --O-_-z2 (''-Izl)' OyOz ('' [zl) - 0-_z (''-Iz[)'

which, in particular, implies

(2.14b) Oui 02ui
Oz (''0)=0' OyOz (. ,0)=0, fori#4,

and the following set of equMities for i = 4:

(2.15a) ui(",I_1)= __i(.,-I_1)

Oui Ou i Ou i j Ou i

0-2(-,1_1)- 0x(,-I_l),-5_y(-,Pzl)- _(-,-I_1),

02_t i 02U i _ 02"ui0v2 (-,[_l)- 0v2 (.,-Izl), 0z (.,Izl)- 0z_ (-,-I_l),

which yields

O_t i _ O?t i

-5_2(.,Iz[) = _2(.,-I_1),

02U i 02U i

0y0z(', Izl) - 0y0z(',-[zl),

(2.15b) ui( ., O) = O,

Relations (2.14), (2.15)

linearized system.

Ou i _ O_t i

5-2 (., o) = o, -5-{y(., o) = o,

02u i 02u i

b_y_(.,0)= 0, -5-_S(.,o) = o, for i = 4.

will be used in Section 2.4 when constructing the discretization for the

The flow equations are integrated numericMly on a curvilinear grid generated around the wing.

The grid shown in Figure 2.1 is a one-block C-O type grid; it this paper we will use the grids of this

type only. The surface designated F on Figure 2.1 is actually the external set of nodes of the C-O

grid, i.e., the artificial boundary. Henceforth, we will also need the notation Di_ for the interior of

F, i.e., for the finite computational domain, and the notation D_ for the infinite exterior of r.

The curve F1 C D_ (see Figure 2.1) actually represents the set of ghost nodes (or centers of the

ghost cells for the case of finite-volume discretization), it can also be thought of as the outermost

set of nodes of the original C-O grid; the surface F then becomes the penultimate set of nodes. We

will further assume that the linearization (2.1) is vMid in D_x, i.e., outside F, so that F1 belongs

Mready to the linear zone. The actuM admissible size of Din such that the perturbations can be

considered sufficiently small and therefore the assumption of the linearity in D_ would hold, is, of

course, unknown ahead of time. We verify the validity of linearization in D_x a posteriori, through

the series of numerical experiments, see Section 3.
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Clearly,whenthe stencil of the schemeusedinsideDin is applied to any node from F, it

generally requires some ghost cell data. Note, for the second-order central difference schemes

(like those employed in the code FLOMG, see [10, 11, 12] and TLNS3D, see [21]) the consideration

of only one layer of ghost cells F1 is sufficient, but the case when the stencil is more extensive

and consequently, more ghost cells are required, can be treated similarly. Unless the missing

ghost cell data are provided, i.e., obtained with the help of the ABC's, the discrete system solved

inside the computational domain appears subdefinite, in other words, it has less equations than

it has unknowns. As mentioned in Section 2.1.3, the apparatus of the DPM [6, 7, 8] gives us the
complete boundary characterization of the traces of exterior linear solutions. Since the linear zone

D_ stretches from F to infnity and contains rl, the following approach appears most natural

for setting the ABC's. First, the data provided from inside Din are subjected to the projection

operation. The resulting projection will by definition admit a complement on D_x that solves

(2.1), (2.2). The latter complement can be calculated in the form of a generalized potential and

considered on F1. Altogether, this procedure yields the missing relations between the values of the

solution on F and F1. In other words, it provides for a desired closure to the discrete system solved

inside Din, or the ABC's. Typically, the solution Mgorithm inside Di_ involves some pseudo-time

iterations (see Section 3); then, the foregoing closing procedure is applied on every iteration cycle,

more precisely, every time the ghost cells need to be updated in order to advance the next time

step.

We now proceed to the description of the generalized potentials and boundary projections, as

well as their finite-difference counterparts, that are required for setting the DPM-based ABC's.

Note, if the potentials and projections are calculated for exactly the operator L of (2.1a) that

operates on the functions u defined on the entire inffinite domain D¢x and satisfying boundary

conditions (2.2), then the corresponding BEP appears equivalent to the originM linear problem

(2.1), (2.2) (see [6, 7, 8]). We, however, will have to introduce some simplifications and to carry

out the DPM-based procedure for a certain approximation of problem (2.1), (2.2) (see Sections 2.3

and 2.4) rather than for this problem itself. Nonetheless, the corresponding appro_mate solution

can be made as close to the original one as initially prescribed (see [18] and below for more detail).

Therefore, within the accuracy of far-field linearization the resulting ABC's can be made as close
to the exact ones as desired.

2.3. Foundations of the DPM-based ABC's. Here, we will first formulate and solve the

so-called auxiliary problem (AP) for the inhomogeneous version of system (2.1) with boundary

conditions (2.2). This AP will be the central element of our construction of Calderon's generalized

potentials and boundary projections. In fact, the solution of the AP can be thought of as a

substitute for the convolution with the fundamentM solution in classical potential theory.

2.3.1. Infinite-Domain AP. Let us consider a compactly supported vector-function {fi} =

f - f(x,g,z), suppf _C Di,, of dimension four (i = 1,...,4 for (2.1b)) or five (i = 1,...,5 for

(2.1c)); in the meantime, we do not specify the concrete form of f. This function f will be the

right-hand side for the AP. The AP is initially formulated on the entire space R3; namely, we will

be looking for a solution u of system

(2.16) = f

that meets boundary condition (2.2) at infinity.

Note, when discussing regular solutions below we assume, if necessary, that the functions

involved can be represented in the form of their Fourier integrals.

PROPOSITION 2.1. Let f be a compactly supported distribution, f C T_(R3), supp f C Din.

Then, system (2.16), (2.1b) i._ solvable in the Schwartz space D'(R3).
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To justify proposition 2.1, we use the standard methodology based on application of the Fourier

transform over the entire R 3 (see, e.g., [43]). Clearly, to obtain the solvability of (2.16) in/9'(R 3)

it is sufficient to make sure that the inverse symbol of the operator L (see (2.1)) belongs locally to

LI(R3). Denoting the dual (Fourier) variables to (x, y, z) by (_, r/, 4), we can write the symbol Q
of L as

(2.17) Q = i_C + i_?D + iCE - rl2F - _2H - rleY.

Then, the entrees 0jk = 0kj, j = 1,...,4, k = 1,...,4, of the inverse symbol Q-1 for the incom-

pressible case (2.1b) are given by

(2.18) On - i4 + R_ ,
p2

_2 + {2

022 = (i_ + v2R-_-/C------Z2) 62,

012- _02 , 013-

-O/

023 (i_..t_ _) _02

+ ¢2

+

-i_/ -i_

62 , 014- 62 ,

034 = (i_ Jr-r/_e¢---_2 ) cO2'

_2 + r/2

where 62 = _2 + r/2 + C2. From (2.18) one can see that Q-1 has only one real singularity, it is

located in the origin, (_, r/, _) = (0, 0, 0). Clearly, all 01k, k = 1,...,4, are absolutely integrable

near the origin and consequently, 01k ¢ L_°¢(R3) for k = 1,..., 4. As for the other 0jk, we introd: ,_

the polar coordinates: _ = 0cos0, 71= Qsin 0 cos go, C = psin0sin_o, 0 _< 0 _< _r, 0 _< c2 < 27r. :d

notice that for sufficiently small Q's

(2.19) Re 2 <_ cos20 + . sin 4 0, 0 _< 0 _< _r.

For j = 2,..., 4 and k = j,..., 4, estimate (2.19) ilnmediately yields

Q2 const Re
10j l _< const <_

const-_-,1/2
sin 4

0 \ _ 0)

and we therefore conclude that Ojk ¢ L_°°(R3) for all j = 1,...,4, k = 1,...,4. Thus, we have

shown that proposition 2.1 does hold for the incompressible case (see (2.1b)). Note, similar proof

for the two-dimensional compressible case can be found in [17].

PROPOSITION 2.2. Let f E LI(R3). Then, equation (2.16), (2.1b) may have no more than one

regular solution u ¢ I)'( R 3) that vanishes at infinity, i.e. satisfies (2.2).

Indeed, the Fourier transformation J_ of the RHS is continuous on R 3 in this case. The regular

solution u to (2.16), (2.2) is given by the inverse Fourier transform: u = (Q-1j_)_. Since Q-1 j_

has only one real singularity (in the origin), then any other solution can differ from u by no more

than an inverse Fourier transformation of a distribution concentrated in the origin. The latter

can be nothing but a sum of 6-functions and their derivatives, which correspond to polynomiMs

after the Fourier transform. Therefore, proposition 2.2, which is actually a statement of conditional

uniqueness, has been justified. Note that we have been able to establish uniqueness so easily because
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the inverse symbol Q-1 has only one isolated real singular point. This, for example, would not be

the case for the Euler equations, which can be obtained by formally letting Re -1 = O.

PROPOSITION 2.3. Let f be compactly supported and f E L2(R3). Then, equation (2.16),

(2.1b) has a solution u = u I + u H, where u I is infinitely smooth on R 3, i.e., u I E C_(R3), and

satisfies boundary condition (2.2), and u H E L2(R3). Moreover, for any _ > O, one can always

choose the representation u = u s + u II so that u II L_( R3)- _ _.

Consider a partition of unity 1 = go + g6, where both (scalar) functions go and g6 are infinitely

smooth on R 3, go - 1 on a ball Uno centered in the origin with the fixed radius R0, and go = 0

outside a bigger ball UR0+, with the radius R0 + #, # > 0. Clearly, as f E L2(R 3) and f is

compactly supported, then f E LI(R3). The solution u is given by the inverse Fourier transform:

U: (Q-I?)_ = (Q-lg0j_)_@(Q-lg_?)_. The first term of the foregoing sum, uS_ (Q-lg0?)_ ,

is obviously an inverse Fourier transformation of a function from LI(R3). Moreover, for any poly-

nomial P = P(_, % C): PQ-agof E LI(R3). Therefore, u I E C_(R 3) and u s meets boundary

condition (2.2). The second term, uss - (Q-lg(_f) _, is an inverse Fourier transformation of a

function from L2(R 3) because ? E L2(R 3) and Q-a is bounded when _ _ +(x_ as can be dearly

seen from expressions (2.18). (The Fourier transform in this case can be regarded in the sense

of Plancherel.) Therefore, uss E L2(R3). Clearly, both u s and uss depend on the choice of the

partition of unity I = go + g0, i.e., on the choice of R0. Since _IS _ Q-lg_f E L2(R 3) for any R0,

then Q-igor L_(R3) + 0 as R0 ----+ +_ and consequently, uss L2(R3) ÷ 0 as R0 _ +_.

This concludes the proof of proposition 2.3.

PROPOSITION 2.4. Let f be the Fourier transformation of f on R 3 and f E LI(R3). Then,

equation (2.16), (2.1b) has a continuous solution u on R 3 that meets boundary condition (2.2).

The statement of proposition 2.4 is obvious as in this case Q-if E LI(R3).

In our further constructions, however, we will not always be able to guarantee the inclusion

j_ E LI(R 3) as required in proposition 2.4. Typically, suppf C_ Din and we may also assume that f

is sufficiently smooth on Di_. On the other hand, we do not generally require the differentiability

of f on the entire R3; f and its derivatives may have the discontinuities (of the first kind) on

the surface F -- ODin. For any RHS f of this type, we will make sure that when we successively

approximate f by the smooth functions f_ the corresponding smooth solutions u_ in a certain

sense converge to the solution u guaranteed by proposition 2.3.

Consider a sequence f,_, n = l, 2,..., of infinitely smooth compactly supported on Di_ functions

that converges to f in the sense of L2(Di_): [If - fni]L2(Din ) _ [If -- fn[]L2(R3) ----* 0 aS n ----+ +(Yo.

(The sequence f_ always exists because f E L2(Di_) and the space D(Di_) of all compactly

supported infinitely smooth functions on D{_ is everywhere dense in L2(D{n), see, e.g., [43].) The

Fourier transformation f_ of any f_ E D(Di_) is infinitely smooth on R 3 and decays at infinity faster

than any power of r-1 with all its derivatives. (Fourier transform in the sense of Planchere] obviously

coincides here with the standard transform in the sense of L1.) Therefore, for any polynomial

p = p(_, % {): pQ-lf_ E LI(R 3) and consequently, the solution u_ to the system Lu_ = f_ is

also infinitely smooth on R 3, un E C_(R3), and satisfies boundary condition (2.2). We now consider

the same partition of unity 1 = go + go as used when proving proposition 2.3. an = (Q-a f_)_ =

[ SI where I ( )_ ss ( )_ [ "a/s _ _,(_o(_3)u_ + u_, u_ = Q-lgo?_ and u_ = Q-lgo?_ ; clearly, both u_,

L2(R 3) L2(UR o )
and both I II 0 when r oo. As f_ L2(R3) f, then f_ ----, f and g0f,_It n , "a n ----÷ _ ,

gof. Comequently,'S gO fn LI(UR°)'---+ go? aD_d therefore go?_ L_(R3)go?. Since Q-1 E L_°¢(R3),

then Q-lgo? n L_(R_) Q_lgo. _ and also for any polynomial P - P((, _], C): PQ-lgo?n LI(R---_z_)

PQ-_go?. Therefore, u_ = Q-_go on R 3 with all its derivatives,
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Oa+f_+n it/ ----+ 0a+3+_ ¢tIox_av_Oz_ --+ ax_Ov_Oz_ as n --_ +co (see, e.g., [44]). As for the second term, obviously

II L2(___R3) ullg_L Lo(R3)g6fandconsequently,Q-'goL L_(__3)Q-lg_S. Therefore,un asn _ +_.
Thus, we have justified

PROPOSITION 2.5. Let suppf C_ Di_ and f _ L2(Di_). For any f_ E l)(Di_), the solution

u_ to the system Lun = f_ (see (2.1b)) satisfies boundary conditions (2.2) and u_ E C_°(R3).

Moreover', if the sequence fn C l)(Din), n = 1,2,..., converges to f in the sense of L2, fn L2(R3)---"f,

I II where I IIthen each solution Un can be represented as a sum of two terms, u_ = u n + u n , u_, u_ E

°_+_+_ u I _ °_+_+_ u I and u II L_(--_R3) u u as n ----+C_(R3), u_, u_r _ 0 as r _ _, ox_o_o_ _ o_o._o_
+oc. Here u I and U II are the same as in proposition 2.3.

2.3.2. Finite-Domain AP. To implement the DPM-based ABC's in practice (Section 3), we
will need to be able to actually cMculate the solution to the auxiliary problem. Since the formulation

of the AP from Section 2.3.1 still involves infinite domain, we replace it by the approximate finite-
domain formulation that allows easy numerical solution.

As any linear system of PDE's with constant coefficients, (2.16) admits the separation of

variables in the Cartesian coordinates. Therefore, we implement the Fourier transform in the

cross-stream and span-wise directions:

(2.20a) 1 _" u(x, z)e-iW-i¢Zdydzi_(x, _l,_) = _ y,
--00

(2.20b)

co

1//f(x, _, () = _ f(x, y, z)e-ivY-i_Zdy dz
--CO

and obtain a family of one-dimensional systems

(2.21) cditdx ÷ (i,]D + i_E - _]2F - C2H - _]_J) it = ?

that we consider on the entire line -oc < x < oc for all (_?,_) C R _.
supplemented by the boundary condition

Each system (2.21) is

(2.22) I/_(x,_/,4)1-<eonst for - _ < x < _,

which actually implies [/_(x, _, _)[ _ 0 as Ix] _ c_ (compare to (2.2)) if there are no zeros

among the eigenvalues of the matrix Q - C -1 (ir]D + i(E - rl2F - C2H - _]_J). The only special

case, for which the decay of _i(x, r], 0 when Ix[ _ oo cannot be guaranteed, is (V, _) = (0, 0);

therefore, we generally set the boundary conditions in the form (2.22). It, however, has been shown

in [13] that after the inverse Fourier transform the solution u will still vanish as Izl increases.

Note that although designated by the same notations, "h and f in formulas (2.20), as well as

Q, are not the same here as in the previous section. Indeed, the direction x has been left out when

calculating the Fourier transformations (2.20). This has been done because the natural spatial

anisotropy prescribed by the direction of the free stream exists in our model and therefore the

stream-wise coordinate x will be given a special treatment in the finite-domain AP.
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Generally,the solutionit(x, r], () to problem (2.21), (2.22) can be found as a convolution

oo

(2.23) it(x, 71,4) = / Gl(X - x', _l, £)f(x', 7, ()dx'
--00

with the corresponding one-dimensional fundamental solution Gl(x, r], 4). Then, the solution u to

Lu = f can be restored by means of the inverse Fourier transform, which eventually yields:

(2.24) u(x, y, z) - 1 e iyv+iz< Gl(x - x', _l, 4)
(2_)2

-- O0 --(DO

O0

j f(x, y', z')e-i_Y'-i¢_'dy' dz' dx' d_]dC.
--00

Now, let us consider the new formulation of the AP that is periodic in both cross-stream and

span-wise directions. Specifically, we introduce the periods Y and Z for the coordinates y and z,

respectively, replace the Fourier integrals by the Fourier series, and instead of (2.24) obtain

_.z(XD ,/_y _C'4, OO

(2.25) uyZ(x,y,z) - 1 - . 2_k_ • 2_k_ f ( 2_rky 2_k_)YZ _ _ e'_--r-+_--r- al x-x', y ,
]¢z _--O0 ]gy_--O0 --oo

/ .. .2rrky ! .2_kz ~t .
f(x, yl, z,)e-_ y y -_ z "_dy' dz t dx I.

-- OC)

In our previous work (see [13, 17, 18]), we have analyzed the similar periodic formulations for the

two-dimensional case. It has been shown that for any fixed-size subdomain the periodic solution

will converge to the original nonperiodic solution as the period increases. These results can be

transferred to the case of three space dimensions without changes. Namely, let Y0 and Z0 be fixed.
Then,

(12.26) u_.-x(_, y, _) --- u(x, y, _) as (Y, z) _ (+_, +o_),

t% Y0 Z0 Z0
when -V < y <Y' -Y < _ <Y

The convergence considered in (2.26) is typically uniform. The convergence for the derivatives can

also be established under some additional conditions (see [18]). Finally, as we are going to solve the

AP by a finite-difference method (Section 3), certain relations between the period(s) and the grid

size(s) should hold, see [13, 17] for more detail. We also note that the convergence on a fixed-size

domain is sufficient for our purposes because for constructing the ABC's we will need to know the

solution of the AP only on some neighborhood of the artificial boundary.

Thus, we have replaced the original infinite-domain AP by the new problem formulated on the

beam-shaped domain [-oc, oc] × [-Y/2, Y/2] × [-Z/2, Z/2]. This domain is still infinite in the

stream-wise direction. To make the entire formulation truly finite, we first introduce some interval

[0, X] so that [0, X] x [-Y/2, Y/2] × [-Z/2, Z/2] D rl. Consequently, systems (2.21) will be

homogeneous outside [0, X] for all (Tlky, 4k_.) - (_, _). Then, boundary condition
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(2.27a) [ (Q(k)- k) = o,

prohibits the non-decreasing modes in the solution of the corresponding homogeneous system as

x ---+ -e¢ and boundary condition

(2.27b) I I-I (Q(k) - A(k)I)] it(X'k) = °'_(_)ko

prohibits the modes that increase as x ----+ +_. Therefore, boundary conditions (2.27) are equiv-

alent to (2.22)in the sense that the solution to (2.21), (2.27) on [0, X] will be the same as

the corresponding fragment of the solution given by (2.23). In formulas (2.27), k = (ky, k_),

/t(.,k) -- /t(.,rlky, (k_), Q(k) - C -1 (iqk_D + i_kzE- rl_yF-_zH- _lky(k J), A(k) are the

eigenvalues of Q(k), and I is the identity matrix of the appropriate dimension.

The formulation of the finite-domain AP is therefore complete. For a given compactly

supported RHS f, suppf C Din, it consists of solving system (2.16) on the parallelepiped

[0, X] × [-Y/2, Y/2] x [-Z/2, Z/2] with the periodicity boundary conditions in the y and z di-

rections and boundary conditions (2.27) in the x direction. As mentioned above, by increasing the

periods Y and Z one can make the solution to this AP arbitrarily close to the original nonperiodic

solution on any fnite fixed neighborhood of Di_.

We will designate the Green's, i.e., inverse, operator of the finite-domain AP by G so that if

Lu = f then u = Gf. We also introduce the space 5c _ f of the RHS's for the finite-domain AP

(Vf : suppf _C Di_) and the space b/_ u of its solutions so that L : 5/_ 5r and G : _ _/2.

Keeping in mind that the functions u E b/ approximate the solutions to the infinite-domain AP of

Section 2.3.1 in the sense mentioned above, we will henceforth consider those u E b/ as satisfying

the appropriate boundary conditions at infinity.

2.3.3. Generalized Potentials and Boundary Projections. Let us now introduce the

space of clear traces S. The elements _ E Z are the vector-functions defined on the artificial

0_ r where n is the normal to F.boundary F; typically, for any u E lg we may consider _ = u, N_n]

The concept of clear trace is delineated in [6, 7]. The operator Tr :/// _ Z that associates the

clear trace with each u E 14 is called the clear trace operator.

Let now some _ E Z be prescribed. One can always find a compactly supported function v

such that Try = _. Then, the truncated function f = (LV)ID, _ E .Y can be a RHS for the
finite-domain AP. The corresponding solution of the finite-domain AP considered only on D_ is

called the generalized potential with the density _: P_ d_=f [G ((Lv)lDin) ] D¢_," The generalized

potential can be shown to depend only on its density _ and not on the choice of v (see [6, 7]).

The composition of operators P and Tv, PF d_=/Tr P, maps the space of clear traces onto

itself, Pr : F _ Z. This new operator is a projection, P1? = PF, and is called the generalized

boundary projection. Those and only those _ E Z that belong to the image of the generalized

boundary projection, _ E ImPr, or in other words, satisfy the boundary equation with projection
= PF_, are actually the traces of some u E L/.

In the next section, we construct the finite-difference counterparts to the generalized potentials

and boundary projections and apply those to setting the ABC's.
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2.4. Computation of the DPM-based ABC's.

2.4.1. Formulation of the Difference AP. Let us introduce a Cartesian grid on the par-

Mlelepiped [0, X] × [-Y/2, Y/2] × [0, Z/2] D F1. By virtue of symmetry (see Section 2.2 and, in

particular, formulas (2.14), (2.15)), we may consider only a half of the domain along the coordinate

z. The x-grid is uniform with the size hx: Xm = mhx, m = 0,1,...,M, Xo = O, XM = X. The

grids in y and z can also be uniform with the sizes hy and hz, respectively: yj_ = -Y/2 + juhu,

jy = 0,1,...,2Jy + 1, Y0 = -Y/2, y2Jy+x = Y/2, and zjz = -Z/2 + jzhz, j_ = J_,...,2Jz + 1,

zj z = -hz/2, z2Jz+l = Z/2. (For the z-grid, we use here the same indexing of nodes as if it would

be if we considered the entire interval [-Z/2, Z/2] rather than only its half [0, Z/2]. This is done

mostly to keep consistency in the notations.) However, as we expect to have better accuracy for

bigger periods Y and Z (see Section 2.3.2), it may be convenient for applications to keep the y-

and z-grids uniform only in the vicinity of Di_ and then stretch them away from the computationM

domain. This will allow us to cover bigger periods with the same number of nodes. In so doing, we

can retain the same indexing for the nodes yiy and Zjz but the grid sizes hy and h_ will no longer

be constant. In all our computations (Section 3), we have actually used the stretched grids in the
y and z directions.

We designate the entire three-dimensional Cartesian grid

by N °, N o _ jv--0,1,...,2J,+l, L = The
solutions u h E bth of the difference AP will be defined on this grid. We also introduce an-

other Cartesian grid M °, on which we will define the RItS's fh E 5rh of the difference AP.

Compared to the nodes of the grid N °, the nodes of the new grid M ° are shifted half-size

x: M° -- "Jl.(x,__l/2, yj_,Zjz) m= 1,...,M, jv =0,1,...,2Jr + 1, jz = J,,...,2J_ + 1},in where

x,_-1/2 - (m- 1/2)hx.

We discretize the operator L of (2.1) on the grid N o with the second order of accuracy. The

finite-difference scheme is centered with respect to the nodes (m- 1/2,jy,j_). To discretize 0,_-5z,
we use the first-order differences in x, this ensures the second order of approximation because the

residuals are evaluated on the same semi-integer grid M °, on which the RHS's are specified. For
the first derivatives 0, and Ou_z, we use the three-point second-order discretization and designate
the corresponding grid operators by Dy and Dz, respectively. The dimension of this operators

is the same a.s the dimension of the grid because they act on vector-functions u.,j_,, and u.,.,j_

componentwise. On the uniform grid, this discretization turns into the standard central differencing

as the central node drops out, but if the grid is stretched the discretization contains all three non-
zero coefficients. The second derivatives °2u °2_ and °2_

0v2, 0z2, _ are discretized by the appropriate

compositions of the first difference derivatives; D 2, D_, and DyDz, respectively. We will designate

the discrete direct operator by L h.

Let now u h - Um,jy,j z and fh - fm-1/2,jy,j_" Because of the periodicity in y,

(2.28a) u.,0,. = u.,2jy+x,., f.,0,- = f.,2Jy+l,..

Also, because of the symmetry/antisymmetry with respect to z = 0 (see boundary conditions

(2.14), (2.15)) and periodicity in z,

(2.28b) u!,.,L. = u!,.,2&+l_j_ , fJ,.,j._ = f_.,2&+l-jz, jz = O, 1,..., .]_, for i ¢ 4,

u!,.& = -'u!,.,.2&+l_jz , fJ,.,jz = -fi.,2&+l-j_, J_ = O, 1,..., Jz, fox" i = 4.

Again, whereas we formally enumerate the z-nodes from 0 to 2J_ + 1 in (2.28b), this formulas in
fact show how one can consider only half of these nodes instead.
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To replace the continuous transforms (2.20), we introduce the discrete transforms T (y) and

T(z) so that for each i:

jz=2Jz+l jy=2Jy+l

(2.29a) hi ,r(z) T(y) u i ""tt',ky,kz = E E "-kz,jz ky,jy "OyOz'

jz=l jy=l

jz=2Jz+l jy=2Jy+l

(2.29b) = E E kz,jz ky,jy J.,j>jz"f.ik_,kz T(z) T(y) ri
jz=l jy=l

The operators T(Y) and T(z) have the inverse that we denote by T(Y) _= T(y)-I and T(Z) = T(Z) -1

respectively, so that

kz=Jz ky=Jy

(2.aoa) ¢,j = }2 E
• y

kz=-Jz ky-..=-Jy

_j(_) _(y) _i
_,kz jy,ky .,ky,kz,

kz=Jz ky=Jy

(2.aob) = E E
kz=-Jz ky=-Jy

T(_) T(Y) ]ik k
jz,kz jy,ky ",_y,_z"

We require that the operator T (y) diagonalize the first and consequently, the second difference

derivative with respect to y:

(2.31a.) T(Y)DyT (y) : diag {iT]ky}, T(Y)D2T (y) : diag {-r/_y},

where _]k_, ky = -Jy,..., Jy, are real. Similarly, we require that the operator T (y) diagonalize the

first and the second difference derivatives with respect to z:

(2.31b) T(_) DzT (_) = diag {i_kz}, T(_) D_T (_) = diag {-C_z },

where (ky, kz = -Jz,..., Jz, are also reM. From (2.31a) and (2.31b) it follows that

(2.31c) T(Z,T(y, DyD_T(Y)T(_) : -diag {',ky } diag{(kz }.

Clearly, the columns of the matrix T (y) should therefore be the eigenvectors of Dy and analogously,

the columns of T(_) should be the eigenvectors of D,.

Note, in practical computations on the stretched grids (Section 3) the eigenvectors and eigen-

vMues of Dy and Dz are calculated with the standard IMSL subroutines. Although the resulting

bases are, generally speaking, not orthogonal, the accuracy provided by this calculations is high.

In fact, this accuracy far exceeds any requirements to the accuracy of ABC's that may originate

fl'om the accuracy of the interior solver. The inverse operators T(_) - T( y)-I and T(_) = T (_)-1

are also found with the help of the standard IMSL subroutines.

If, in particular, the grids in y and z are uniform, then T (y) and T (z) are reduced to the

well-known discrete Fourier transforms (from here on, the overbar - means complex conjugate):
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_-ikzjzh._
(2.32a) T (y) = e-ikyjyhy _- T(z) _= e _

"4 ' 27r

(2.32b) 5_(Y) 2P(Y) = e_k_J_h_-7- _(z) @(z) =- eikzjzhz_

jz,kz = _kz,jz _ + 12v_+ 1

Let us now consider a special class of grids, namely, yjy = --Y2Jy+l-jy for jy = 0,..., Jy and
Zjz = -z2&+l-j_ for j_ = 0,..., J_. Obviously, all uniform grids belong to this class, for the

stretched grids it means symmetric stretching. Then, one can make sure that

(2.33a) T (y) - :Y(Y) for ky = 0, Jy
--ky,jy -- ky,jy " " "' '

T(_) = 2P(_) for k_ = 0, J_,
k_ ,j_ kz,jz _ " " •,

(2.33b)

and also

(y) _r(y)

Tk(_) = T (_)
z,2Jz+l-jz k_,j_

(2.34a) 2_(y) _(Y) for ky 0,. ,Jy,
jy,--ky = jy,]Cy -_ ""

T):)-kz 5_(_) for k. = 0, J.,= jz,kz _ " • •,

(2.34b) T(Y) " k _(Y) for jy = 0, Jy,
2Jy-[-1-3y ,_y _ ljy,ky "'.,

for = 0,= jz,kz " " •,

For the discrete Fourier transform on uniform grids, relations (2.33) and (2.34) immediately fol-

low from (2.32a) and (2.32b), respectively; for the nonuniform grids these relations are verified

experimentally.

Substituting (2.33) into (2.291)), taking into account relations (2.28) and also that fh is real,

we obtain for i ¢ 4 (._ means the real part):

(2.35a) ^if.,Ik_hlkA = jy=2Jy+lE [ jz_J_

jy=l [j_=Jz+l

_r(y) a_r(_) ri "_ _r(_) _T(_) d
_[ky [,Jy.... [k_[,JzJ',_Y,J'-] + NI_y[,.iy°_[kz 1,2.]z-t-1J',jy,2Jz+l

_il_yl,_lkz [ ^i= f.,l_yl,lkzl' f_i,_lkyl,lkA ^i _'_

and for i = 4 (._ means the imaginary part):

jy=2Jy+l jz=2Jz

(_.35b) ^i -i E E _Tl_)l,jy'_Tl(Z)l,jzfif',lkul,l_l - -,0_,a_
jv=_ jz =&. +_

fi ^i ^i xi x.•,l_ul,-I_--I =-/-,l_ul,lk=l' /',-I_yl,l_zl =-f',l_=l,l_=l ]i' -,-I/_l,-I_zl =/.,Ik_l,l_zl"
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The relationssimilar to (2.35)canalsobeobtainedfor u h on the basis of formulas (2.28), (2.29a),

and (2.33). Furthermore, taking into account that u h is real and using formulas (2.30a) and (2.34)

we obtain for the inverse transform if i _ 4:

kz=Jz ky=Jy

(2.36a) i - 4 _u.,jy,jz --
kz=l ky=l

kz_.]z

2E
kz=l

k_=Jy

2E
ky=l

T (_) T(y) _ti
jz,O jy,O .,0,0

(_(_) _(y) _ _(_) _(y) _¢ "_
jz,kz jy,ky_U',ky,kz -- jz,kz jy,ky .,ky,kz ] "_-

[_(_) _¢(y) _i _1_"-_(_)o_m(Y)_lk "_!,k_,o) +_, j_,O " jy,ky _t .,ky,O- .Tz, 3y, y

and if i = 4:

(2.36b) u i • •

kz=Jz ky=gy

\ 3z_z 2y_y "_ _Y_" 3z_z 2y_tCy "_ y_ z/

kz=l ky-_]

kz=Jz

3z_'z 3y, ", _z"

k_=l

Usage of the transforms (2.35) and (2.36) instead of (2.29) and (2.30), respectively, allows us to

calculate only one fourth out of the total number of coefficients, namely, those for k s = 0, 1,..., Jv

and k_ = 0, 1,..., Jz. This obviously implies a four-fold speedup and four-fold shrinkage of the

storage requirements when implementing in practice the separation of variables ibr the difference
AP.

In the transformed space, instead of Lhu h = fh we obtain a family of one-dimensionM systems:

where

A/_/t,_,/_ d- Bk/tm-l,t: = fm-1/2,k,

m = 1,...,M, k = (ku, k_),

ks = O,...,Js, k_ = O,...,J_,

(2.38) 1 C i_ D i_zE__/_SF_¢_z H _]_(_.-j,

= -Ic i_s D i¢_ E - _ F- H
Bk h_ + 2 + 2 2

For each system (2.37), we have to specify the boundary conditions at m = 0 and m = M.

Analogously to the continuous boundary conditions (2.27), the boundary conditions for the discrete

system should explicitly prohibit the corresponding growing modes of the solution. This can be

achieved by setting
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(2.39a) [ la(k)l>lI-[ (Qk- ,_(h)I)

and

_0,k -----O,

(2.39b) II_(Qk--A(k)I)J_ta#,k=o,i)_(k)l_<1

where Qk = Ak -1Bk, /_(_) are the eigenvalues of Qk, and I is the identity matrix of tile appropriate
dimension.

The finite-difference AP has thus been formulated completely. It consists of solving the discrete

system Lhu h = fh on the grid N o with the RHS specified on the grid M °. The boundary conditions

in the directions y and z are periodicity and symmetry, see (2.28). The boundary conditions in the

direction x are specified by formulas (2.39) in the transformed space separately for each component

after the original system Lhu h = fh has been reduced to (2.37), (2.38) by the separation of variables

(2.35), (2,36). The methodology for solving systems (2.37), (2.38) with boundary conditions (2.39),
as well as the specific structure of these boundary conditions, are studied in the next section.

2.4.2. Solvability of the Difference AP. Let us first concentrate here on the incompressible

case, when the 4 × 4 system matrices are given in (2.1b). For simplicity, we will temporarily omit

the indices h. If rl- rlky ¢ 0 or _ -- _'kz ¢ 0, then the solutions As --- ,_s(k) and e, - e,(h),
s = 1,...,4, of the problem Bke - AAk = o are given by

(2.40) _1- £ ?_C ] _x _- 2/_

_3

_4

-1

+ 1 _ 1

2 + _ h_

el = [0, 0,--_, _]]t

= A2

-1

-1

F
_ i _ l te2 = |0, 1,

Re ' RT Jk

e 3

e 4 z

+_V/-_2 + _2 + Re

[V/_ 2 rl2 + _2+ _2 + Re '

From (2.40) we see that we have to analyze two different cases. In the regu!ar case when

v/_+ _2/2 - 1/h_: ¢ O, none of the eigenvalues A, degenerate, the inverse A_ _ exists, and the

eigenvalues/eigenvectors (2.40) are also the eigenvMues/eigenvectors of Qk. The determinant of

the Gram matrix constructed on the normalized eigenvectors e_ from (2.40) can be shown to be
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(2.41) Detc =

2/
4 I1 -

Re2 /\

,2+_2 _ _p+¢2 _ 2 "
(1+_/ ((1+_/ +8)

Therefore, if (_/2 + 42) # Re2 then the eigenvectors es are linearly independent and for v_ + ( 2/2-

1/hx # 0 we can diagonalize the system (2.37):

(2.42) el e2 e3 e4 ]S_IQ/_Sk = diag {As}, where Sk = [e-_l[' [-e--22['[_31' [_44[ "

Let us note that since _/2 < 1/h_ and ( 2 <_ 1/h_ (hy and hz are the smallest grid sizes) then the

condition (_/2 + (2) ¢ /_e 2 appears not too restrictive. For example, the asymptotic width of

the plane viscous wake in the far field behind the body is _ 1/v/-R-_ (see, e.g., [45]). Therefore,

to resolve this structure it is sufficient to have the grid sizes of order 1/v/-R-c as well (Re is an

effective turbulent Reynolds number), which puts the operator Sk of (2.42) far away of the possible

singularity. We also note that in the formal inviscid limit 1�Re ----+ 0, the determinant DetG of the

Gram matrix (see (2.41)) becomes fully independent of the wavenumbers _/and (, which essentially

means that the "extent of skewness" for the basis {es} will be constant.

The solution to the diagonalized system (2.37) is easy to find by marching those components,

for which As < 1, fl'Oln left to right and those components, for which As > 1, from right to left. It

is also easy to make sure that boundary conditions (2.39a) essentially imply that the components,

for which As > 1, are not specified (i.e., can be arbitrary) at the left end of the interval and the

components, for which As _< 1 (those that would not decay as m ---+ -_), are zero at m = 0.

Similarly, boundary conditions (2.39b) mean that the components, for which As _< 1, are not

specified (i.e., any value is admitted) at the right end of the interval and the components, for which

As > 1 (those that would increase as m ----+ +c<>), are zero at m = M. Let us also note that

1�Re may be arbitrarily small but as long as it is positive, IAs] _ 1 for all s. Consequently, we

have only growing and decaying modes and no constant or oscillating modes in the solution of

the corresponding homogeneous system. Therefore, in accordance with the results of [46] we have

arrived at

+ l/h, # 0. Then,PROPOSITION 2.6. Let _lky _ 0 or 4_z # O; let also _lky

system (2.37), (2.38), (2.1b) with boundary conditions (2.39) is uniquely solvable and well-

posed for any compactly supported RHS f,_-l/2,k. The constant in the well-posedness estimate

II .,kll <  onst .f.,k doesnot dependon M.

Note, the system (2.37), (2.38), (2.1b), (2.39) can also be solved using tile methodology of [16].

Tile case v_+ (2/2- 1/hx = 0 requires special analysis. In this case, A3 = 0 and also formally

A4 = oc. In fact, however, it is easy to make sure that both matrices Ak and Bk are singular for

+ 42/2 - 1/h:_ = 0. Let us therefore consider a regular pencil of matrices Ak + #B_ (see, e.g.,

[47]). We can rewrite these pencil as follows: Ak+#Bk = (At; - B_)+(#+I)Bk - A _k+(#+ 1)Bk.

non-singular and therefore AI_ + #BI_ = A_ (I + (# + 1)A[.-1B/_).AsA_= _C/_ , this matrix is

The combination of matrices in the brackets can be diagonalized, which yields:
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(2.43) Ak + #Bk =

! !
AkSk

1 0 0

o o
o o
0 0 0

0

0
t--1

Sk ,
0

-#

where S_. is the corresponding similarity transform. (It is easy to make sure that all the eigenvectors

are linearly independent so that non-singular S_ does exist.)

From representation (2.43) we conclude that there are still three components in the solution that

should be calculated by marching from left to right and one component that should be calculated

by marching from right to left. This obviously matches the structure of boundary conditions (2.39)

as the latter can also be multiplied fi'om the left by a nonsingular matrix A_.. In fact, the pencil

Ak + #Bk has one zero elementary divisor that corresponds to marching from right to left, at least

one "infinite" elementary divisor that corresponds to marching fi'om left to right, and may have

either two finite elementary divisors or another two "infinite" elementary divisors that would also

correspond to marching from left to right. Clearly, any of these marching procedures will easily

lead to an M-independent estimate of the resulting solution via the prescribed RHS. Therefore, we

have justified

+ l/hx : 0. The ,PROPOSITION 2.7. Let _lk, _ 0 or (k_ _ O; let also _lk_

system (2.37), (2.38), (2.1b) with boundary conditions (2.39) is uniquely solvable and well-

posed for any compactly supported RHS fm-U2,k" The constant in the well-posedness estimate

II ,kl[_<co ,sZ does,ot depe, d M.

Let us now mention that for the discrete Fourier transforms on the uniform grids _/_y =

sin \(2_k'Jhv]Y]/hy and _kz = sin (2___h.)/h_. Then, to avoid the considerations that result in propo-

sition 2.7 and to restrict oneself by the case of proposition 2.6 only, one can impose the following

limitation on the grid sizes: hf 2 > (h_2+hf'2)/4. We also note that the general analysis of constant-

coefficient ordinary difference equations based on the canonical forms of the corresponding pencils

of matrices can be found in work [48].

The analysis of the last remaining case, 7/ky = (k v = 0 ¢==_ k = o, is straightforward as

Qo = -I and the solution of (2.37), (2.39) can therefore be found by marching all the components

from left to right. In accordance with the results of [46] and [16], the well-posedness constant in

this case is proportional to M.

For the compressible case (2.1c), the similar results also hold. However, the anMytical expres-

sions of type (2.40) are generally hard to obtain, so the actuM eigenvMues and eigenvectors must be

calculated numerically (we again use the standard IMSL subroutines). The critical value, for which

the eigen-basis becomes singular (see proposition 2.7) is now _/r/_u + _/2 - _/_ - M2o/hx = O.

We will designate the Green's, i.e., inverse, operator of the difference AP by G h so that if
fh E _h and Lhu h = fh then u h = Gh f h and u h E H h.

2.4.3. Difference Potentials and Projections. Let St.__l/2,jy,j z be the stencil of the dif-

ference operator Lh; according to Section 2.4.1, we use the first-order differences for the coordinate

x and the central-type differences and their products for the coordinates y and z. Let us also

introduce the following grid sets (the overbar/)i_ here means the set-theoretical closure):
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FIG. 2.2. Continuous artificial boundary F, grid boundary 7, collocation grid _ on F, and ghost nodes F1 ]or a

typical three-dimensional configuration.

(2.44) Min a_=_JMoADin ' Me_ d_=fMO_D_x '

Ni_ = U stm_l/2,j_,j., N_ = U St,_-U2,jv,J-.,

(m-1/2,jv,jz )eM., (m-1/2,jy,jz )eM_

7 = Nin [_ Nex.

By definition (2.44), Mi_ and Me_ do not have common nodes. The sets Nin and Ne_, already have

some COlnmon nodes because these sets are swept by the stencil Stm_l/2,jy,j z as it is applied to every
node from Min and M_x, respectively. The intersection of Nin and N_x is called the grid boundary

7. It is actually a multi-layered fringe of nodes of the auxiliary Cartesian grid concentrated in the

vicinity of the continuous artificial boundary F. Similarly to the continuous case (Section 2.3.3), the

density of the generalized difference potential will be defined on the grid boundary 7- An example

of the grid boundary (actually, a few planar cross-sections of this set) for a typical configuration

studied in this paper is shown in Figure 2.2.

The difference clear traces _.y E _.y of the functions u h ¢ U h are now defined as merely the

contractions to the grid boundary, i.e., T_'hu h de=f uh _ = _/, Tr h : _[h _ Z._.

Let now some _ C Sz be prescribed and v h be a grid function defined on N o such that

Trhv h = _/. Clearly, there are many functions v h that would meet this condition, for example

(2.45) v h = { _'Y on 7,
o on N°\7.t
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Then, consider the function
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(2.46) .Th _ fh = _ Lhvh on Min,

L o on Mex,

where v h is defined by (2.45), and solve the difference AP with this RHS fh of (2.46). The resulting

solution considered only on Nex is called the generalized difference potential with the density _:

(2.47) P%d z (a' sh)

(fh in (2.47) is defined by (2.46)). Analogously to the continuous case (Section 2.3.3), the general-

ized potential ph(.y of (2.47) can be shown to depend only on its density _z and not on the choice

of v h (if the latter differs from (2.45) but still Trhv h = _), see [7].

The composition of operators ph and Tr "h, ph de_=fT,rhph ' maps the space of the difference

clear traces onto itself, P_: _z _ _2y. This new operator is a projection, p_h2 = ph, and is called

the generalized difference boundary projection. Those and only those _ E _z that belong to the

image of the generalized difference boundary projection, _z E ImP h, or in other words, satisfy the

difference boundary equation with projection _.y = P_z, are actually the traces of some u h E U h.

Note, numerical verification of the projection property pzh2 = p¢_ is an ideal test for accuracy

of the solution of difference AP. In our practical computations for different geometries on different

grids, we have always been able to obtain for arbitrary _'s: [IP_2_,- P_II < 10-9" This, in
particular, justifies the usage of the stretched grids when solving the difference AP.

As mentioned before (Section 2.3.2), we consider the continuous functions u E L/ as satisfying

the appropriate boundary conditions at infinity because the difference between the non-periodic

solution and its periodic approximation is controlled by Y and Z and can, in fact, be made as

smM1 as initially prescribed. The discrete space L/h approximates the continuous space l_/, therefore

we consider those grid densities _/ that belong to ImP_ _, _ E ImP h as admitting the exterior

complement in the right sense. In other words, these and only these functions _._ admit such a
h def

complement %_ = phil, that satisfies the boundary conditions of the difference AP (see (2.28),

(2.39)i); this complement can therefore be made arbitrarily close (near D_n) to an originM linearized

exterior solution; in the next section, it is used for setting the difference ABC's.

2.4.4. Global DPM-based Artificial Boundary Conditions. Having constructed the

procedure for calculating the generalized difference potentials and projections, we can now pro-

vide for a closure to the discretized Navier-Stokes system that is solved inside the computational

domain Din, i.e., obtain the ABC's. As mentioned in Section 2.2, the interior solvers typically

involve some sort of pseudo-time iterations. To make every step of the iteration procedure, we

need to know the previous-step solution everywhere on the grid, including the ghost nodes rl. If

these data are available, then on the next step we will know the solution everywhere except on

rl. Consequently, to advance another iteration we will have to supplement the missing data on rl.

This will be done by projecting the available boundary data. at r onto the "right manifold", i.e.,

the one that admits the right exterior complement (see the previous section), and then calculating

this complement on rl. In so doing, we can obtain the missing relations between the values of the

solution on r and rl every time the ghost nodes need to be updated.

First, let us introduce the intermediate collocation grids a and _1 on both surfaces F and rl.

An example of such (_ C r is shown in Figure 2.2. These grids are typically a few times coarser than

r and F1. Usage of the collocation grid on r is an element of general procedure of the difference
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potentialsmethod[7]. Moreover,for the specificproblemunderstudyusageof thecollocationgrids
resultsin multi-fold accelerationof the computationalprocedureandalsoin memorysavingsif the
boundaryconditionsareimplementedin the matrix form (seebelow).

0,) where is the normal to r data availableThen, let us take@ = u,_. r (these are from

inside the computational domain Din on every iteration) and, using the clustering R_ on F, obtain

_. The latter procedure (clustering), in fact, implies local averaging or smoothening along r.

Furthermore, we drop normals from all nodes 7 to the surface F and interpolate _ with sufficiently

high order to the feet of these normals. The corresponding operation is denoted R_; typically, we

use the bi-quadratic surface interpolation. Having obtained u and 0u at the feet of the normals,
we use the first two terms of the Taylor expansion (denoted 1%) and obtain _:

(2.48) _.y=_r.yRnR_(u, C_nn) [..

Then, we calculate the potential ph_ for the density _I/ h= P_ _.y and interpolate it (operation R_I )
from N,x to the nodes (r1 C rl:

(2.49)
U 1 h /

= R_I P _ -- R_ P_.

The second equality in (2.49) holds because of the projection property of P_. Finally, the missing

values of the solution at the nodes F 1 are obtained from u _ by means of interpolation along the

surface rl, which altogether yields the nonlocal DPM-based ABC's in the form

here the operation T is composed of the operations (2.48), (2.49), and interpolation along F1. As

mentioned above, in the course of the iteration procedure boundary condition (2.50) is applied

every time we need to update the values of the solution at the ghost nodes rl. The implementation

of ABC's (2.50) can either be direct or involve preliminary calculation of the matrix T. In the

latter case, the runtime implementation of the ABC's (2.50) is reduced to a matrix-vector multi-

plication. Moreover, in this case we can do the first clustering R_ and the last interpolation along

F1 separately, i.e., leave these operations out of the structure of T. Then, instead of (2.50) one can
write

where both the dimension of T' and its computational cost are many times smaller than those of

T from (2.50).

Let us also note that we need to know the potential only on some neighborhood of the surface

rl (see (2.49)). At the same time, according to (2.45) and (2.46) the density of the potential differs

from zero only near 7. Therefore, for both direct T (y), T (_) (see (2.29)) and inverse T(Y), T(Z)

(see (2.30)) transforms we actually have to take into account only a few "non-zero" nodes out of

the total numbers of 2.]y + 1 and J_ + 1 along y and z, respectively. This effectively makes the

computational cost of these transforms to grow linearly rather than quadratically with respect to

2Jy + 1 and J_ + 1, and obviously implies a very substantial reduction of the required computer
resources.
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3. Numerical Results.

3.1. Two-Dimensional Summary. Forthereasonof completeness,wefirst brieflycomment
on the two-dimensionalresultsfi'om our previouswork (see[14, 15,18]). In that work, wehave
calculatedthe subsonicand transonicviscousflowspast single-elementairfoils (NACA0012and
RAE2822).

Thetwo-dimensionalcomputationaldomainis formedbythe C-typecurvilineargrid generated
aroundthe airfoil. On this grid, the Navier-Stokesequationsareintegratedusingthe codeFLOMG
by SwansonandTurkel[10,11,12]. Thestandardtreatmentof the externalboundaryin the code
FLONGis basedon the locallyone-dimensionalcharacteristicsanalysis,whichmayor may not be
supplementedby the point-vortexcorrection[32].

Basicconclusionsthat couldbedrawnfrom our two-dimensionalnumericalexperiencearethe
following. TheDPM-basedABC's aregeometricallyuniversal,algorithmicallysimpleandeasyto
implementalongwith theexistingsolver.Forthelargecomputationaldomains(30-50chordsof the
airfoil), the performanceof thestandardmethodsand the DPM-basedABC'sis verycloseto one
another. As,however,the artificial boundaryapproachesthe airfoil the discrepancybetweenthe
correspondingsolutionsincreases.Thelift and dragcoefficientsobtainedon the basisof the two-
dimensionalversionof boundaryconditions(2.50)deviatefromtheir asymptotic(50chords)values
muchslighter(within fractionsof onepercent)than the coefficientsobtainedwith the localABC's
do. In otherwords,the nonlocalDPM-basedABC's allowoneto usemuchsmallercomputationM
domains(assmallas2-3 chords)than the standardboundaryconditionsdoandto still maintain
high accuracyof of the numericalsolution. Moreover,if wecomparethreemodels:DPM-based,
point-vortex, and standardlocal (characteristics-based),then it turns out that the DPM-based
ABC's displaythebestperformancefor smallcomputationaldomains,theperformanceof the local
characteristicboundaryconditionsfor smalldomainsis verypoor, andthe point-vortexboundary
conditionsperformmuchbetter for the lift than they do for the drag coefficient.This behavior
seemsreasonablesincethe point-vortexmodelis a,lift-basedtreatment.

Wealsonote that for certainvariantsof computationthe DPM-basedABC'smaynoticeably
speedup (by up to a factor of three)the convergenceof the multigrid iterations,see[13,14,15].
Somediscussiononcombinedimplementationof theDPM-basedABC'swith multigrid iscontained
in

3.2. Three-Dimensional Computations. The DPM-based boundary conditions (2.501)

have been combined with the interior Navier-Stokes solver and used for calculating viscous flows

around the ONERA M6 wing for different regimes that range from very low to transonic Much

numbers and include both attached and separated turbulent flows.

We use the NASA-developed code TLNS3D by Vatsa, et al. [21] to integrate the thin-layer

equations on the curvilinear C-O grid (see Figures 2.1 and 2.2) generated around the wing. The

code is based on the central-difference finite-volume discretization in space with the first- and

third-order artificial dissipation. The steady-state solution is obtained by means of a pseudo-time

iteration procedure; the integration in time is done by the five-stage Runge-Kutta algorithm (with

the Courant number calculated locally) supplemented by the residual smoothing. For the purpose

of accelerating the convergence, the multigrid methodology is implemented; in our computations

we used three subsequent grid levels with V cycles; the full multigrid methodology (FMG) could

be employed as well. In addition, we use the preconditioning technique of [49] to improve the

convergence to steady state. We implement the DPM-based ABC's (2.50) only on the finest level

of multigrid on the final FMG stage; the boundary data for coarser levels are provided by the

coarsening procedure. Moreover, even on the finest level we implement the DPM-based ABC's only

on the first and the last Runge-Kutta stages, which has been shown to make very little difference

compared to the implementation on all five stages; the boundary data for the three intermediate
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stagesareprovidedfrom theDPM-basedABC'sonthefirst stage.Unlikethetwo-dimensionalcase,
thestandardtreatmentof theexternalboundaryin threedimensions(codeTLNS3D)is basedmerely
on thelocallyone-dimensionalcharacteristicsanalysisandextrapolation(asthepoint-vortexmodel
is not applicable).

All three-dimensionalflowsthat wehaveanalyzedareturbulent. In the nearfield (i.e., inside
Din), the Navier-Stokes solver is supplemented by a special turbulence model to account for the

corresponding phenomena. Depending on the specific flow variant, either an algebraic or a differen-

tial turbulence model can be employed. In the far field, we use Boussinesq's concept of the effective

turbulent viscosity, i.e., effective Reynolds number (see [15]). This simplest approach has been

found to produce accurate results when incorporated in the structure of the DPM-based ABC's.

The value of the Prandtl number for all the calculations was either Pr = 0.72 (air) or Pr = 1.

In all the cases below, the auxiliary Cartesian grids are stretched along the coordinates y and z.

The stretching typically starts outside F1; the stretching factors (we use the geometric progression)

vary between 1.07 and 1.1 for different variants. The typical values of Y and Z that we have used

also vary between 20 and 30 sizes of Din in the cross-stream direction and 4 and 10 sizes of D_n in

the span-wise direction. The uniform Cartesian grid in the vicinity of D_n is always chosen so that

the distance between F and F1 is well resolved.

We should also emphasize that in spite of their nonlocal nature the DPM-based ABC's (2.50)

are geometrically universal. In other words, these boundary conditions can be obtained for the

boundary P of any irregular shape by means of the same computational procedure. This conclusion

directly follows from the previous considerations and has also been repeatedly corroborated in the

numerical experiments. Moreover, ABC's (2.50) appear easy to incorporate in the structure of the

existing flow solvers, which has been corroborated in practice as well, and which is very important

from the standpoint of applications. The issue of the computational cost of boundary conditions

(2.50) and some possible ways of its reduction will be addressed later on, in Section 3.2.4.

3.2.1. Low Mach Number Regime. We first consider a very low speed flow, M0 = 0.01,

which, in fact, is close to the truly incompressible case. Preconditioning [49] makes the analysis of

this flow possible with TLNS3D. The flow is turbulent with the molecular Reynolds number based on

the root chord of the wing Reo = 11.7- 106; the angle of attack is a = 3.06°; there is no separation

and the turbulence inside Di_ is simulated using the Baldwin-Lomax algebraic model, which is

based on the concept of mixing length.

Since the free-stream Mach number is so small, we have implemented here the incompressible

version of the nonlocal DPM-based ABC's (2.50) constructed on the basis of matrices (2.1b). In

Table 3.1, we present the results of calculations for two different computational domains of the

"average radii" of 10 and 1.25 root chords of the wing, respectively (root chord means the chord

length at z = 0).

TABLE 3.1

ONERA M6:M0 = 0.01; Reo = 11.7. 106; c_ = 3.06 °.

"Average radius" of D/n 1.25 root chords I 10 root chords

Dimension of the grid 197 × 49 × 33

Type of ABC's standard DPM standard I DPM

Full lift, CL 0.2052 0.1954 0.1940 0.1939

Relative error 5.78% 0.77% 0% 0%

Full drag, CD × 100 0.695 0.685 0.681 0.681

Relative error 2.1% 0.58% 0% 0%

In both cases, we used the C-O type grids of the same dimension 197 × 49 × 33; for the small
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domainthe grid wasobtainedby scalingdownthe biggergrid andwasobviouslyfiner in the near
field. Onecanseethat for thebig domaintheresults(forcecoefficientsCL and CD) obtained using

both methods are very close to each other. However, as the domain shrinks the accuracy obtained

with the DPM-based procedure appears much better than the accuracy provided by the standard

methodology. In other words, the nonlocal DPM-based ABC's (2.50) allow one to essentially reduce

the size of the computational domain without compromising the accuracy. This confirms that if

the structure of the far-field solution is correctly taken into account by means of the ABC's then

within a certain range of domain sizes the computed near-field solution becomes essentially domain-

independent. We also note that as the near-field grid for the small domain is finer than for the big

domain then the associated truncation error can be expected smaller.

3.2.2. Subsonic Regime. The next case is a subcritical (i.e., fully subsonic) compressible

flow for M0 = 0.5. Here, the free-stream Mach number is already high enough to make the

compressibility effects very essential but on the other hand, it is still not too high so that the flow

remains locally subsonic throughout the entire domain. The angle of attack and the molecular

Reynolds number for this case are the same as for the previous one: cr = 3.06 °, Reo = 11.7- 106.

The flow is also fully attached and the turbulence model inside Din is algebraic (Baldwin Lomax).

The DPM-based ABC's (2.50) for this case were constructed on the basis of non-symmetrized

matrices (2.1c). For this specific value of Mach number, M0 = 0.5, the "extent of non-symmetry" in

the system matrices (2.1c) still appears quite acceptable. However, for low Mach numbers M0 _< 0.1

treated in the compressible framework (unlike in Section 3.2.1), the usage of symmetrizer (2.3) and

matrices (2.4) can be recommended. On the other hand, we should note that in work [18] we

have been able to obtain accurate two-dimensional results for M0 = 0.01 without symmetrizing the

system matrices in boundary conditions.

In Table 3.2, we compare the results of calculations for three different computational domains.

TABLE 3.2

ONERA M6:M0 = 0.5; Reo = 11.7 • 106; c_ = 3.06 °.

"Average radius" of Dis 1.25 root chords 2 root chords 10 root chords

Dimension of the grid 197 × 49 × 33

Type of ABC's standard DPlVl standard DPM standard DPM

Full lift, CL 0.2218 0.2065 0.2185 0.2065 0.2081 0.2072

Relative error 6.58% 0.34% 5.0% 0.34% 0% 0%

Full drag, CD x 100 0.817 0.791 0.793 0.791 0.787 0.788

Relative error 3.8% 0.38% 0.76% 0.38% 0% 0%

Like in the previous case (Section 3.2.1), here the DPM-based ABC's produce much more accu-

rate solutions on the small computational domains than standard boundary conditions do. This

obviously amounts to either saving the computer resources while preserving the accuracy of compu-

tations or improving the accuracy while keeping the computational cost at the same level. Of course,

lower levels of the truncation error for finer grids on the small domains can also be anticipated here

as in the foregoing low Math number case.

3.2.3. Transonic Regime. Most of the standard test cases for flows around the ONERA M6

wing are transonic (see, e.g., the experimental work [50]). In such flows the free-stream Mach

number is sufficiently high so that the local speed exceeds the speed of sound in some bounded

region near the upper surface of the wing. This leads to the formation of a supersonic (i.e.,

supercritical) "bubble", which typically has a sonic-surface type upstream boundary and a shock-

wave type downstream boundary.
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Attached Flow. The first transonic case that we present is M0 = 0.84, (_ = 3.06 °, Reo =

11.7 • 106. In this case, the angle of attack c_ remains sufficiently small so that the weak shock

_,,i the upper surface of the wing does not cause the flow separation. Therefore, we still use the

BMdwin-Lomax model for simulating the turbulence inside Din. An important difference compared

to the previously studied cases is that here we cannot bring the artificial boundary as close to the

wing as done in Sections 3.2.1 and 3.2.2. The reason is that our far-field treatment is purely subsonic

and therefore, the artificial boundary should not come to the boundary of the supercritical bubble

too close. Therefore, we ran our computations for two domMns, the "radius" of the big one is still

about 10 root chords of the wing and the "radius" of the smM1 one is about 3 root chords of the

wing. Unlike in the previous cases, here we constructed the C-O grids of different dimension for the

domains of different size; the smMler (3 root chords) grid is an exact subset of the bigger (10 root

chords) grid. This has been done in order to completely eliminate any influence that the change of

the grid in the near field may possibly exert on the calculated solution.

The nonlocal ABC's (2.50) for this case were again constructed on the basis of matrices (2.1c).

In Table 3.3, we compare the computed results (calculated lift CL and drag CD coefficients) for

two different types of ABC's on two different dolnains.

TABLE 3.3

ONERA M6:M0 = 0.84; Reo = 11.7 • 106; a = 3.06 °.

"Average radius" of Di_ 3 root chords 10 root chords

Dimension of the grid 197 × 49 × 33 209 × 57 × 33

Type of ABC's standard DPM standard DPM

Full lift, CL 0.298+0.004 0.2798 0.2805 0.2786

Relative error 6.24%+1.43% 0.43% 0% 0%

Full drag, CD × 10 0.168+0.008 0.1537 0.1542 0.1531

Relative error 8.95%-1-5.19% 0.39% 0% 0%

For the small computational domain, the DPM-based ABC's again clearly outperform the standard

method fi'om the standpoint of accuracy. We also note that in this case the total number of nodes

in the bigger grid is about 25%, more than in the smaller grid, which obviously implies an accordant

increase of the associated cost of computations.

Even more important, for the transonic case the DPM-based ABC's influence not only the final

accuracy of the solution but also the convergence rate of the iteration procedure employed inside

Din. Namely, for the standard ABC's the multigrid iterations on the small computational domain

converge noticeably slower than they do for the DPM-based ABC's. In fact, for the same 500 V-

cycles on the finest multigrid level, we simply have not been able to obtain a stable solution for the

3 root chords domain with the standard boundary conditions. That's why the corresponding data

in Table 3.3 are given with the error bands indicated. The convergence history for the transonic

computations on the 3 chords domain is given in Figure 3.1a for the residual of the continuity

equation and in Figure 3.1b for the number of supersonic points in the domain. Note, the latter

quantity is deemed very sensitive for calculation of the transonic flows.
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FIG. 3.1A. ONERA 11/16: -Mo = 0.84, Reo = 11.7.106, o_ = 3.06 °. Convergence history for the residual of the

continuity equation. "Average radius" of Di,_ is 3 root chords of the wing; the dimension of the grid is 197 × 49 × 33.
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FIG. 3.1B. ONERA M6:M0 = 0.84, Reo = 11.7. 106, a = 3.06 °. Convergence history for the number of

supersonic nodes in the domain. "Average radius" of Di_ is 3 root chords of the wing; the dimension of the grid is

197 ×49 x 33.

From Figures 3.1 one can easily see that the difference in the multigrid convergence rates for the

different types of ABC's can be as big as approximately a factor of three.

The history of convergence of the same two quantities for the big (10 root chords) computational
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domain is presented in Figures 3.2.
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FIG. 3.2A. ONERA M6: Mo = 0.84, Reo = 11.7 - 10_, c_ = 3.06 °. Convergence history ]or the residual of the

continuity equation. "Average radius" of Di_, is 10 root chords of the wing; the dimension o] the grid is 209 × 57 × 33.
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FIG. 3.2B. ONERA M6: Mo = 0.84, Reo = 11.7 • 10_, c_ = 3.06 °, Convergence history ]or the number of

supersonic nodes in the domain, "Average radius" of Din is 10 root chords of the wing; the dimension of the grid is
209 × 57×33,

We see that that in this case the DPM-based ABC's also provide for some convergence speedup,
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although the difference between the two methodologies appears less dramatic. This seems reason-

able because one could generMly expect that the bigger the computational domain, the smaller is

the influence that the external boundary conditions exert on the numericM procedure.

Let us also note that on the small (3 root chords) domain the two algorithms apparently

converge to quite different solutions (this is most clearly seen in Figure 3.1b), whereas Figure 3.2b

Mlows one to assume that on the big (10 root chords) domain the final solutions are close to one

another. The data from Table 3.3 corroborate these conclusions. This behavior of the solution again

fits into the aforementioned concept that the overall impact of the ABC's on the computational

algorithm decreases as the domMn enlarges.

Separated Flow. When one increases the angle of attack c_ in the transonic regime, the flow

pattern changes. The shock on the upper surface of the wing becomes stronger. Since the chord

length of the wing decreases span-wise as z increases (see Figure 2.1), then the stream-wise size

of the supersonic bubble decreases as well, and eventually the upstream sonic surface and the

downstream shock wave meet somewhere in the area. close to the wingtip. For sufficiently strong

shocks this, in particular, produces flow separation on the upper surface of the wing. We have

analyzed the separated flow of this type for M0 = 0.84, (_ = 5.06 °, Reo = 11.7 • 106.

The separation zone on the upper surface of the wing for this case is relatively small, the flow

fully re-attaches before the trailing edge so that no phenomena associated with the separation are

present in the wake. However, the simulation of such flows already requires more sophisticated

turbulence models inside the computational domain; we have used the the two-equation Menter's

model [51]. Moreover, it requires much finer grids in the near field than the simulation of the
attached flows does.

As in the previous transonic case, the global ABC's (2.50) are constructed here on the basis of

matrices (2.1c). The computations are conducted for two different domains of the "average radii"

of 3 and 10 root chords of the wing, respectively, on the grids of the same dimension 193 × 49 × 33;

the smaller grid is obtained by scaling down the bigger grid (analogously to Sections 3.2.1 and

3.2.2). In Figure 3.3, we present the distribution of the pressure coefficient

P -- PO

Cp -- ½flo,Uo 2

on the upper and lower surfaces of the wing in the cross-section z = const at the 90% of semi-span.

The 90% of semi-span station corresponds to the area of developed separation. The three solutions

that we have computed in this case are for the global DPM-based ABC's on the 3 and 10 root

chords domains and standard ABC's on the 10 chords domain. These solutions are compared in

Figure 3.3 against the experimental data..

From Figure 3.3 we conclude that all three numerical solutions very well match one another

and also match the experimental data to a reasonable degree of accuracy. We also emphasize

that analogously to the previous cases, the DPM-based global ABC's (2.50) are quite capable of

generating an accurate numerical solution on the small domain for this separated flow case. On

the other hand, unlike in the previous cases, the standard ABC's are simply unable to produce

a convergent solution on the 3 root chords computational domain for the a = 5.06 ° separated

flow around the ONERA M6 wing. In other words, the multigrid algorithm with the standard

ABC's fails to converge on the small computational domain. Let us recall that for an easier case of

(_ = 3.06 ° the convergence of the standard procedure on the small domain was only slowed down

but not completely destroyed. The history of convergence of the residual of continuity equation for

the case a = 5.06 ° on the small domain is presented in Figure 3.4a.
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FIG. 3.3. ONERA M6: Mo = 0.84, Reo = 11.7 • 106, o_ -----5.06 °. Surface pressure distribution at the 90_ of
semi-span (x/c: x is the coordinate calculated from the leading edge, c is the local chord length). Dimension of all
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FIG. 3.4A. ONERA M6: Mo = 0.84, Reo = 11.7 - 106, o! = 5.06 °. Convergence history for the residual of the
continuity equation. "Average radius" of Di,_ is .3 root chords of the wing; the dimension of the grid is 197 × 49 × 33.
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At the same time, on the big (10 root chords) domain both algorithms for the c_ = 5.06 ° case

converge at the same rate, see Figure 3.4b.

100

10-1

10 -2

"10
-_ 10-3
O
rr

10-4

10-s

o Standard ABC's
DPM-based ABC's

)

10 -6 _ I , I , I I I

0.0 200.0 400.0 600.0 800.0
Work

FIG. 3.4B. ONERA M6:M0 = 0.84, Reo = 11.7 - 106, a"= 5.06 °. Convergence history for the residual of the
continuity equation. "Average radius" of Din is 10 root chords of the wing; the dimension of the grid is 197 x 49 × 33.

Figures 3.3 and 3.4 allow us to conclude that the nonlocal DPM-based ABC's (2.50) not only

speed up the convergence of the multigrid iterations but are generally capable of increasing the

robustness of the entire numerical procedure.

3.2.4. Computational Cost of the DPM-based ABC's. In all the three-dimensional

computations described above, the DPM-based ABC's were implemented directly, without com-

puting the matrix of operator T from (2.501). By applying the new procedure only on the first

and the last Runge-Kutta stages and only on the finest multigrid level, the total number of the

required calculations of generalized potential has been brought to a minimum. In so doing, the

average cost of application of the DPM-based ABC's (2.50) adds about 20-25% of the CPU time

to the cost of the same procedure with the standard (characteristics-based) boundary conditions.

This extra expense is not high (taking into account the improvement of accuracy); moreover, it can

often be compensated for and even noticeably prevailed over by the convergence acceleration and

the reduction of the domain size. Besides, to explicitly decrease the computational cost associated

with the DPM-based ABC's we plan on the future use of the entry-wise interpolation of boundary

operators (see [22]) and/or the multiresolution based methodologies (see [20, 22]). We expect that

the latter can also be employed when implementing the DPM-based ABC's for multi-block grids.

4. Conclusions. The new global ABC's for calculating steady-state external viscous flows in

three space dimensions have been constructed on the basis of the difference potentials method. The

approach generalizes and extends our previous two-dimensional results.

The new ABC's are capable of greatly reducing the size of the computational domain (compared

to the standard methods) while still maintaining high accuracy of the numericM solution. This size

reduction amounts to either the possibility of refining the grid in the near field, which potentially
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leads to increasing the accuracy, or usage of the smMler-dimension grids while keeping the accuracy

at the same level. Moreover, the DPM-based ABC's may noticea.bly speed up the convergence of

the multigrid iterations and generally improve the robustness of the entire numerical procedure.

Finally, the new boundary conditions appear geometrically universal and easy to incorporate in

the structure of the existing flow solvers. The properties of the new ABC's have been corroborated

experimentally by computing the subsonic and transonic flows past the ONERA M6 wing using

the NASA-developed code TLNS3D.
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